LocalZero:Empfohlene Erschließung folgender erneuerbarer Wärmequellen und – speicher

Aus Mitmachen
Version vom 16. Februar 2024, 11:39 Uhr von SabineB (Diskussion | Beiträge) (Kategorie eingetragen)
Zur Navigation springen Zur Suche springen

Das Herzstück der Wärmeplanung ist die Erstellung der Potenzialberechnungen (§ 16), darauf aufbauend die Identifikation von Wärmeanwendungen für die Erstellung des Zielszenarios (§ 17) und die Einteilung des beplanten Gebiets in voraussichtliche Wärmeversorgungsgebiete (§ 18). Hier geht es um die Wärmeversorgung der Zukunft. Wie werden wir unsere Wärmenetze klimaneutral betreiben? Hier kommen einige Wärmequellen in Frage. LocalZero sortiert die unterschiedlichen Wärmeanwendungen in drei Kategorien:

1) Empfohlene Wärmeanwendungen

2) Bedingt empfohlene Wärmeanwendungen und

3) nicht empfohlene Wärmeanwendungen.

Grundsätzlich gilt: je effizienter und je regionaler, desto besser das Potenzial. Bei der Ausweisung der voraussichtlicheren Wärmeversorgungsgebiete kommt es laut Wärmeplanungsgesetz auf diese Indikatoren an, anhand derer die Wärmequellen hier auch bewertet werden:

-       Geringe Wärmegestehungskosten (Investitionskosten + Betriebskosten)[JH1]

-       Geringe Realisierungsrisiken (inkl. Verfügbarkeit in Zukunft)

-       Hohes Maß an Versorgungssicherheit

-       Geringe kumulierte THG-Emissionen bis Zieljahr


Wir geben euch eine qualitative Einschätzung für jeden der vier Indikatoren über die jeweilige Wärmeanwendung. Letztendlich lassen sich in vielen Fällen keine endgültigen Einschätzungen im Vorhinein geben, die Einschätzung sind daher als Gesprächsgrundlage und zum fachlichen Nachfragen gedacht.

Empfohlene Wärmeanwendungen

Wärmeanwendungen Erläuterungen Gutes Beispiel Bewertung
Nutzung von Umweltwärme mittels Großwärmepumpen[Ga2] Luft-Wärmepumpen

-       Kosten[WT3] :

-       Risiken:

-       Versorgungssicherheit:

-       THG-Emissionen:

Stadt xy Bewertung gesamt (typische pro/contra Argumente)?
Nutzung von Umweltwärme mittels Großwärmepumpen Abwasser-Wärme nutzen

-         Kosten: relativ hoher Invest-Aufwand (frühzeitig um Investor kümmern!) bei nachträglicher Realisierung, günstiger, wenn Arbeiten am Kanalnetz anstehen (laufende Kosten?). Sehr effiziente Wärmegewinnung.

-       Risiken: gering

-       Versorgungssicherheit: hoch, selbst im Winter noch 10 – 15 Grad konstante Abwärme zu erwarten

-       THG-Emissionen: keine im Betrieb, grüner Strom für WP

Schorndorf?

Ilsfeld?

Wärmespiel DBU
Nutzung von Umweltwärme mittels Großwärmepumpen Wenn regionale Potenziale verfügbar: Gewässer-Wärme aus Seen oder Flüssen nutzen

-         Kosten: Sehr effiziente Wärmegewinnung.

-       Risiken: gering

-       Versorgungssicherheit: Schwankungen durch Verfügbarkeit von z.B. Flusswasser; braucht Mindesttemperatur [JH4]

-       THG-Emissionen: keine im Betrieb, grüner Strom für WP


Mannheim

Giengen (geplant)

Tiefe Geothermie (Dossier im Wiki verlinken) Wenn regionale Potenziale vorhanden:

Erdwärme durch tiefe Geothermie nutzen.

-       Kosten: Tiefenbohrung sind teuer und bergen Risiko, dass öfter gebohrt werden muss. Vollkosten Wärmebereitstellung bei drei bis 11 Cent pro kWh

-       Risiken: Durch Bohrungen, Fündigkeitsrisiko je nach Lage hoch

-       Versorgungssicherheit: Grundlastfähige Wärmequelle

-       THG-Emissionen: Keine THG im Betrieb, Dauer von Planung bis Betrieb jedoch lang (daher längerer Zeitraum bis Fossile verdrängt werden)

Graben-Neudorf (geplant, Kosten voraussichtlich 10 – 12 Mio. €)
Oberflächennahe Geothermie Kurze Beschreibung. Vor- und Nachteile inkl. grobe Kosteneinschätzung.

-       Kosten:

-       Risiken:

-       Versorgungssicherheit:

-       THG-Emissionen:

Stadt xyz
Freiflächen-Solarthermie Solare Wärme mit Solarthermie ausbauen, eher in Freiflächen um xxyy m², viel Platzbedarf (eher geringes Potential). Außerdem auf Dächern ausbauen (z.B. für Quartierslösungen in Kombination mit Großwärmepumpen)

-       Kosten:

o   günstig (Investition 290€/kWth, M/O-Kosten 1,2% Invest Fraunhofer 2020);

-       Risiken:

o   Flächenverfügbarkeit

o   Ggf. teure Flächen

-       Versorgungssicherheit:

o   Wenig Wärme im Winter

o   In Kombination mit Saisonalspeicher (Kosten)

-       THG-Emissionen: keine, Technik ist da, kann sofort umgebaut werden

Steinheim (BaWü)

Ludwigsburg (BaWü)

Saisonale Wärmespeicher Aufbau von saisonalen Speichern.

Bau mehrerer um xxxyyy m³


Einschätzung

Speicher sind sehr flächeneffizient. Im Winter, wenn wir keinen EE-Strom haben, zu nutzen. Wenn der Wind dann weht, kann der Speicher wieder aufgefüllt werden. Je größer, desto günstiger. Teilweise halbieren sich die Kosten bei Verdopplung der Größe.

-       Kosten: vermutlich sehr teuer, 139€/m³ (Fraunhofer 2020)

-       Risiken:

-       Versorgungssicherheit:

-       THG-Emissionen:

Bracht (Hessen)

Mehldorf

Hechingen

Rostock


Meldorf (erster Erdbeckenspeicher in DE nach dänischem Vorbild)

Puffer- Wärmespeicher Aufbau von Pufferspeichern Stadt xy
Kostengünstige Leitungsverlegung

Wenig Wärmeverluste

Aber Fokus muss Bestand sein.

Kaltes Wärmenetz[JH5] [JH6] -       Kosten:

-       Risiken: Einschätzung LEA: Tiefbaukosten: sehr hoch. Eigentlich nur im Neubaugebiet sinnvoll (Steffen, LEA), außerdem braucht man viele Handwerker. Es bringt zwar effizientere Stromnutzung, aber hoher Aufwand. Außerdem: Betreiber finden ist sehr schwer. Empfehlung: Warme Wärmenetze sind zu priorisieren.

-       Versorgungssicherheit:

-       THG-Emissionen:

Eingeschränkt empfohlene Erschließung folgender erneuerbarer Wärmequellen und – speicher

Wärmeanwendungen Erläuterungen Beispiel Bewertung
Industrielle Abwärme[Ga7] Empfehlenswert, aber (erwartete) Verfügbarkeit prüfen. Etwaige reduzierte Verfügbarkeit der zukünftigen Abwärme (durch stetige Industrietransformation) mitberücksichtigen. Andere Abwärme (Serverabwärme o.ä.) uneingeschränkt empfehlenswert.

-       Kosten:

-       Risiken:

-       Versorgungssicherheit:

-       THG-Emissionen:

Stadt xy
Strom in Power-To-Heat-Anlagen Begrenzt empfehlenswert: Wärmeerzeugung aus Strom in Power-To-Heat-Anlagen. Nur bei Stromüberschuss zu empfehlen, weil Erzeugung einen geringen Wirkungsgrad hat.

-       Kosten:

-       Risiken:

-       Versorgungssicherheit:

-       THG-Emissionen:

Stadt xy
Pellets, Holz, Stroh, Biogas In seltenen Fällen und nur begrenzt empfehlenswert. Sie sind kostbar und gering verfügbar, Verbrennung versucht Emissionen. Nur für Spitzenlast nutzbar und in Kommunen, wo andere Wärmequellen (Gewässerwärme oder Tiefengeothermie) nicht oder kaum nutzbar sind.

-       Kosten:

-       Risiken:

-       Versorgungssicherheit:

-       THG-Emissionen:

Stadt xy
Müll-, Klärschlamm und Restholzverbrennung In seltenen Fällen und nur begrenzt empfehlenswert: Müll[WT8] [JH9] -, Klärschlamm oder Restholzverbrennung erzeugen Emissionen und sollten limitiert sein (max. xy %). Besser Klärschlammpyrolyse.

-       Kosten:

-       Risiken:

-       Versorgungssicherheit:

-       THG-Emissionen:

Siehe z.B. Pyrolyse-Anlage in Niederfrohna

Nicht empfohlene Erschließung folgender erneuerbarer Wärmequellen und – speicher

Wärmeanwendungen Erläuterungen
Blauer Wasserstoff Ok laut GEG, aber schlecht fürs Klima
Grüner Wasserstoff und E-Methan Hohe Wärmegestehungskosten (ineffizient, Import von grünem Wasserstoff, etc.) und hohe kumulierte THG-Emissionen (bis zur Umstellung). Zusätzlich große Nutzungskonkurrenzen mit Industrie und Schwerverkehr, da Wasserstoff knapp bleibt. Abwärme bei Produktion aber nutzbar. Zuerst andere Wärmeversorgungsarten prüfen.